LAB3		(DE1 version)	

Associated Files: DE1.qsf, CH3_DE1.qar, debounce.vhd and sevenseg.vhd	

Exercise #1 (Counter with external input)
· Refer to textbook Chapter 3.2.4 for all counter designs mentioned here.
· Create a new project under “lab03” called “counter”. Import “sevenseg.vhd” and “debounce.vhd” from previous lab or from “CH4_DE1_restored”.
· Create a new VHDL file called “counter.vhd” as follows:
· Make “clock_50”, “KEY” and “SW” the inputs and “HEX0” the output. Change the entity declaration part as shown below.
· Change the architecture identifier to “lab03”.
· Add the component instantiations of two “sevensegs” to display “count” on HEX0 and “lp” on HEX1.

library IEEE;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter is
	port (
		clock_50:	in std_logic;
		KEY	: in std_logic_vector(3 downto 0);
		SW	: in std_logic_vector(9 downto 0);
		HEX0 	: out std_logic_vector(6 downto 0)
);
end entity;

architecture lab03 of counter is
	signal count, lp : std_logic_vector(3 downto 0);
	signal newclk : std_logic;
begin

	filter: entity work.debounce port map(key(3), newclk, clock_50);
display0: entity work.sevenseg port map(count, hex0);
display1: entity work.sevenseg port map(lp, hex1);
--
--Second two-layer Counter example from Figure 3.28	
	Counter2: process(newclk, key(0))
		variable loopcount : integer range 0 to 16;
	begin
		if(key(0) = '0') then	
			loopcount := 0;
			lp <= x”0”;
			count <= "0000";
		elsif(newclk'event and newclk='1') then
			if(loopcount >= 15) then
				loopcount := 0;
				count <= std_logic_vector(unsigned(count)
+ unsigned(SW(3 downto 0)));
			else
				loopcount := loopcount
+ to_integer(unsigned(SW(7 downto 4)));
			end if;
			lp <= std_logic_vector(to_unsigned(loopcount, 4));
		end if;		
	end process;
end architecture lab03;

· Import pin assignments, compile and program the DE1 board.
· In order to display the variable “loopcount” on HEX1, we use a new signal called “lp” and assign the value of “loopcount” to “lp” at every rising edge of the “newclk”. Note that “loopcount” is implemented as a 5-bit unsigned number since it range is 0 to 16. The function to convert integer to unsigned, allow us to force the result to only four bits.
· Record the HEX0 and HEX1 displays in the lab report.
· Change the “if(loopcount >= 15) then” statement to “if(loopcount = 15) then”. Re-compile the design and re-program the DE1 board.
· Record the HEX0 and HEX1 displays in the lab report.

Exercise #2 (Simple frequency counter)
· Create a new project called “FREQ” for this exercise.
· In the above functional block diagram, “Counter_UDT” is the second two-level counter example mentioned in Chapter 3.2.4 and shown as Figure 3.28. The 4-bit count will be selected, via SW(9 downto 8), so we can examine the output one bit at a time.
· In this design, the “Counter_UDT” and the associated multiplexer provides the test input to the frequency counter, and thus UDT (under test). The frequency counter is constructed from the “One_second” one-shot counter, the “Binary_counter” and the seven-segment displays.
· The “Binary_counter” is based on the counter with enable from Figure 3.26. In this case the reset is connected to KEY(2) not KEY(0). Its “clock” input is “UDT” or one selected bit of the output “count” from the “Counter_UDT”. Essentially, “Binary_counter” in this design will count how many rising edges on the signal “UDT” while the counter’s enable = ‘1’. Therefore, if we generate enable = ‘1’ for exactly one second, the output “freq” give us the number in Hz.
· The “One_second” counter provides the “enable” = ‘1’ for only one second as required for the frequency counter design. This occurs right after the counter is reset by KEY(2), and will happen only once. This is known as a one-shot circuit. Therefore, KEY(2) is used as the “re-evaluation” button. Pushing KEY(2) will reset both “One_second” and “Binary_counter” so the frequency of ‘UDT’ is re-evaluated. Note that this counter also has a variable called “loopcount”. Since variables are local to the process, variable with the same name but for different processes are allowed.

library IEEE;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity FREQ is
	port (
		clock_50:	in std_logic;
		KEY: in std_logic_vector(3 downto 0);
		SW	: in std_logic_vector(9 downto 0);
		HEX3, HEX2, HEX1, HEX0 : out std_logic_vector(6 downto 0)
);
end entity;

architecture lab03 of FREQ is
	signal enable, UDT : std_logic;
	signal freq : unsigned (15 downto 0);
	signal count : std_logic_vector(3 downto 0);
begin

	display0: entity work.sevenseg port map
(std_logic_vector(freq(3 downto 0)), hex0);
	display1: entity work.sevenseg port map
(std_logic_vector(freq(7 downto 4)), hex1);
	display2: entity work.sevenseg port map
(std_logic_vector(freq(11 downto 8)), hex2);
	display3: entity work.sevenseg port map
(std_logic_vector(freq(15 downto 12)), hex3);
	UDT <= count(0) when SW(9 downto 8) = "00" else
		 count(1) when SW(9 downto 8) = "01" else
		 count(2) when SW(9 downto 8) = "10" else
		 count(3);
	--This is based on the two-level counter from Figure 3.27
One_second: process(clock_50, key(2))
		variable loopcount : integer range 0 to 50000000;
	begin
		if(key(2) = '0') then	
			loopcount := 0;
			enable <= '0';
		elsif(clock_50'event and clock_50='1') then
			if(loopcount < 49999999) then
				loopcount := loopcount + 1;
				enable <= '1';
			else
				enable <= '0';
			end if;
		end if;		
	end process;
--This is based on the Counter example with enable from Figure 3.26
	Binary_counter: process (UDT, key(2))
	begin
		if(key(2)='0') then
			freq <= x"0000";
		elsif(UDT'event and UDT='1') then
			if(enable = '1') then
				freq <= freq + 1;
			end if;
		end if;
	end process;
--Second two-layer Counter example from Figure 3.28	
	Counter_UDT: process(clock_50, key(0))
		variable loopcount : integer range 0 to 1000000;
	begin
		if(key(0) = '0') then	
			loopcount := 0;
			count <= "0000";
		elsif(clock_50'event and clock_50='1') then
			if(loopcount >= 999999) then
				loopcount := 0;
				count <= std_logic_vector(unsigned(count)
+ unsigned(SW(3 downto 0)));
			else
				loopcount := loopcount
+ to_integer(unsigned(SW(7 downto 4)));
			end if;
		end if;		
	end process;
end architecture lab03;

· Import pin assignments, compile and program the DE1 board.
· Record the frequency number in 7-segment displays in the lab report.

Assignment: (Frequency Counter)
· We will continue to use the “FREQ” project for the assignment.
Step 1:
· The functional block diagram below shows that the frequency counter (enclosed in red dotted lines) from exercise#3 shall be preserved. The “counter_UDT” and its multiplexer are removed.
· Create a “freq_gen.vhd” such that it consists of only one “Process” in its architecture describing the counter example from Figure 3.28 or the “counter_UDT” in previous design. The inputs to “freq_gen.vhd” are “clock”, “reset” and SW, and the only one output is “clk”. Internally “clk <= count(0)”.
· Modify “FREQ.vhd” such that “freq_gen.vhd” is mapped as a component labeled “Clock_Gen”, as shown in the functional block diagram below.
· Compile the new design and re-program the DE1 board. Verify the design.
· Attach freq_gen.vhd and FREQ.vhd in the lab report. (step 1)

Step 2:
· Further modify the frequency counter from “Step 1” as shown in the functional block diagram below. Three major modifications:
· The “One_Second” one-shot circuit is replaced by a “Half_hertz” counter.
· The “Half_hertz” counter will produce a periodic signal “enable” at 0.5Hz such that “enable” = ‘0’ for one second and “enable” = ‘1’ for another second.
· The signal “load” = ‘1’ is generated at the end of “enable” = ‘1’ when “loopcount” = 49,999,999. Signal “load” = ‘0’ at any other time. This signal will be used to load the output of the “Binary_counter” to the register after the counting has completed but before the count is reset back to 0’s.
· The “enable” signal is used as the “reset” signal for the “Binary_counter”. When “enable” = ‘0’ (reset), “freq” = x”0000”. When “enable” = ‘1’ the counting restarts. The checking for the “enable” in the original design should be removed.
· The 16-bit “freq” output from “Binary_counter” is stored in a register “Rfreq”. The register will load “freq” to “Rfreq” only when “load” = ‘1’. The 7-seg displays are showing the values of “Rfreq” instead of “freq”.
· HINT: the generation of “load”:
· Loopcount < 49,999,998: increment “loopcount” by one and “load” = ‘0’.
· Loopcount = 49,999,998: increment “loopcount” by one and force “load” = ‘1’ if “enable” = ‘1’.
· Loopcount = 49,999,999: “loopcount” = ‘0’ and “load” = ‘0’.

· We will no longer see the running frequency numbers during the counting process. Also, KEY(2) has been removed since the re-evaluation of the frequency occurs every other second.
· Re-compile and then program the DE1 board to verify the design. After the system reset, the displays will remain at “0000” for about one to two seconds before the frequency count is displayed. This is because the evaluation takes one second and the “Binary_counter” will then takes a break for another second. Make sure that SW(3:0) represents an odd number. Change the value of SW(7:4) and verify the frequency numbers recorded earlier. This design will automatically re-evaluate the frequency count every two seconds.
· Attach modified FREQ.vhd in the lab report. (step 2)
· When SW(3:0) = “0001” and SW(7:4) = “1111”, calculate the frequency of count(0). This can be easily verified with the frequency counter displays.

LAB3 Report						Name: ________________
																					Name: ________________

From Exercise#1: (using “>=15” condition)
1. What is the counting sequence of "loopcount" or “lp” when SW(7 downto 4) = "0001":

lp = HEX1 = 0 __

__

2. While keeping SW(7 downto 4) = “0001”, what is the counting sequence of "count" when SW(3 downto 0) = "0101"?

count = 0 ___

What is the value of “lp” just before “count” changes? lp = _____

3. What is the counting sequence of "loopcount" or “lp” when SW(7 downto 4) = "0110":

lp = HEX1 = 0 __

4. While keeping SW(7 downto 4) = “0110”, what is the counting sequence of "count" when SW(3 downto 0) = "0101"?

count = 0 ___

From Exercise#2: (using “=15” condition)
1. What is the counting sequence of "loopcount" or “lp” when SW(7 downto 4) = "0011":

lp = HEX1 = 0 __

2. What is the counting sequence of "loopcount" or “lp” when SW(7 downto 4) = "0110":

lp = HEX1 = 0 __

__

3. If we keep SW(7 downto 4) = “0110”, “count” will never be incremented no matter how we set SW(3 downto 0). Explain why?

From Exercise#2:
1. With SW(3:0) = “0001” and SW(7:4) = “0001”: (use SW(9:8) to select UDT)
a. What is the frequency of count(0)?	____________Hz
b. What is the frequency of count(1)?	____________Hz
c. What is the frequency of count(2)?	____________Hz
d. What is the frequency of count(3)?	____________Hz

2. By keeping SW(7:4) = “0001”, if SW(3:0) = “0000” then the frequency of count(0) is 0Hz. If SW(3:0) represents an even number, i.e. SW(0) = ‘0’, then the frequency of count(0) is also 0Hz. If SW(3:0) represents an odd number, i.e. SW(0) = ‘1’, then the frequency of count(0) is always ____________Hz. Verify this with all sixteen possible values of SW(3:0). Explain why this happens?

3. By keeping SW(3:0) = “0001”, what is the frequency of “count(0)”
a. When SW(7:4) = “0010”? __________Hz
b. When SW(7:4) = “0111”? __________Hz
c. When SW(7:4) = “1010”? __________Hz
d. When SW(7:4) = “1100”? __________Hz

4. Derive an formula to describe the relation between the frequency of “count(0)” and the value of SW(7:4), given that SW(3:0) represent an odd number, according to the experimental results from (1) to (3) above.

From Assignment:
Step 1:
1. Attached the freq_gen.vhd and FREQ.vhd to this report.
Step 2:
1. Attached the modified FREQ.vhd to this report.
2. What is the frequency of “count(0)” when SW(3:0) = “0001” and SW(7:4) = “1111”? Show the calculation here and then verify this with the frequency counter displays.

Grade: _____________

Assignment Verified by: ____________________________________
6

